Sesiunea specială - 7 iunie 2017

Subiect M_st-nat I 2.

Determinați numărul real $m$, știind că punctul $M(2, m)$ aparține graficului funcției $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2-3$.
soluția
$ \begin{aligned} M(2, m) \in G_f \Rightarrow & f(2) = m \\& 2^2 - 3 = m \\& m = 4-3 \\& m=1 \end{aligned} $


exerciții

Determinați numărul real $m$, știind că punctul $M(1, m)$ aparține graficului funcției $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2 + 8$.

  $m = $   


 


exercițiu nou

Determinați numărul real $m$, știind că punctul $M(1, m)$ aparține graficului funcției $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2 + 8$.

$ \begin{aligned} M(1, m) \in G_f \Rightarrow & f(1) = m \\& 1^2 + 8 = m \\& m = 1 + 8 \\& m=9 \end{aligned} $

***
La click se selectează și copiază textul în clipboard.
Textul se lipește într-un TeX front-end program (de exmplu TeXworks) care îl transformă în .pdf
***


Întregul fișier .tex



Doar problema în format .tex